Micrel
MICRF405
 
 
 
 
April 2006 
31
M9999-041906
 (408) 955-1690
 
The two first blocks are generating a clock for the
modulator. This clock is, together with the user data,
used to control a charge pump. The charge pump
current is controlled by a DAC. Each time the input
data changes state, a charge is then injected into
the capacitor to generate a modulation signal. The
charge magnitude is controlled by the charging
current and by charging time (inversely proportional
with modulator clock). To be able to achieve small
deviations, it is possible to attenuate the modulation
signal. Finally, the signal is filtered to narrow
transmitter output spectrum.
The procedure is first to determine the settings
concerning the data bit rate, then, these values will
be used in the calculation of the frequency deviation.
Finally, the user must see if the desired values
cause the modulator to saturate.
Deviation Setting
Deviation controlled by user parameters FSKClk_K,
MOD_I,   and   MOD_A,   together   with   physical
parameters fXTAL and KVCO. All user parameters
can be set in software, and fXTAL (crystal oscillator
frequency) is set when designing in the radio chip.
KVCO (VCO gain) is a parameter of the radio chip,
and is not controllable by the user.
The crystal oscillator frequency, fXTAL, is divided by
FSKClk_K to generate the modulator clock. Since
this modulator clock is controlling the rise and fall
times for the modulator, the frequency deviation is
inversely proportional to this clock. The relationship
is shown in equation (3):
XTAL
DEV
f
FSKClk_K
f

 
(3)
It is assumed that FSKClk_K will be constant for
most applications to keep bit-rate and shaping
constant, although this is not a requirement.
The primary two controls of frequency deviation are
MOD_I and MOD_A. Of these two, MOD_I is the
parameter that controls the signal generation, while
MOD_A controls attenuation of this signal. The
reason for using an attenuator is to be able to
generate   small   deviations   at   high   values   of
FSKClk_K. The relationship is shown in equation
(4). 
A
MOD
DEV
I
MOD
f
_
2
_

 
(4)
Finally, the VCO gain is given by equation (5). 
(
)
(
)
FreqBand
FreqBand
f
Const
Const
K
C
VCO


?/DIV>
?/DIV>
+
=
3
3
2
1
(5)
where:
Const1
9
10
6324
.
30
?/DIV>

 
Const2     7
.
54   
fC: Carrier frequency of the radio.
FreqBand: Frequency band.
     0: 315MHz,
     1: 433MHz and
     2: 900MHz.
In equation (5), it is evident that the VCO gain is
dependent of carrier frequency. MOD_I is probably
the best parameter to alter if counteracting this effect
if necessary.
Combining equations (3), (4), and (5) gives us an
expression for the frequency deviation:
(
)
(
)
FreqBand
FreqBand
f
Const
Const
I
MOD
f
f
C
A
MOD
XTAL
DEV


?/DIV>
?/DIV>
+
?/DIV>
?/DIV>
=
3
3
2
_
FSKClk_K
2
1
_
(6)
Observe   that   equation   (6)   gives   single-sided-
deviation. Peak-to-peak deviation is twice this value.
Shaping
The modulation waveform will be shaped due to the
charging   and   discharging   of   a   capacitor.   The
waveform looks like a Gaussian filtered signal with a
Bandwidth臥eriod-product, BT, given by:
FSKn
BT   2
=
 
(7)
where:
BT: Shaping factor.
It is evident from this that a low FSKn gives a low
shaping factor, and is thus preferred if it is possible
to choose FSKn freely.
In addition to this, it is possible to smooth the
modulator output in a programmable low-pass filter.
This filter is controlled by the parameter MOD_F.
The parameter should be set according to equation
(8).
BR
F
MOD
3
10
150
_
?/DIV>
d
 
(8)
Modulator Saturation
The modulator output voltage is generated by a
capacitor that is being charged. This means that
there is a risk of saturating the modulator if the
charge received by the capacitor is too large. Use
equation (9) to determine the maximum value of
MOD_I that can be used.
1
10
28
_
6
+
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
?/DIV>
d

FSKClk_K
f
I
MOD
XTAL
 
(9)
If it turns out that the MOD_I-range is too small for
your   requirements,   try   increasing   FSKn   and
decreasing FSKClk_K accordingly.
 
相关PDF资料
MTX-102-433DR-B MODULE TRANSMITTER 433MHZ 18DIP
MTX-103-915DR-B MODULE TRANSMITTER 915MHZ 18DIP
MTX-405-433DR-B MODULE TRANSMITTER 433MHZ 24DIP
N50P105 IC MODULE MINI JOYSTICK SMD
OCB350L187Z BOARD CALIBR CIRCUIT OPB350L187
OMB.242.08F21 OMNI OUTDOOR ANTENNA
OMNILOG90200 ANTENNA ISOTRP 700MHZ-2.5GHZ RAD
OPR5011 COMPARATOR OPTICAL 3 CHAN SMD
相关代理商/技术参数
MICRF405YML-TR 功能描述:RF Transmitter ASK, FSK 290MHz ~ 980MHz 10dBm 200kbps PCB, Surface Mount Antenna 24-VFQFN Exposed Pad, 24-MLF? 制造商:microchip technology 系列:- 包装:剪切带(CT) 零件状态:停产 频率:290MHz ~ 980MHz 应用:ISM 调制或协议:ASK,FSK 数据速率(最大值):200kbps 功率 - 输出:10dBm 电流 - 传输:18mA 数据接口:PCB,表面贴装 天线连接器:PCB,表面贴装 存储容量:- 特性:* 电压 - 电源:2.2 V ~ 3.6 V 工作温度:-40°C ~ 125°C 封装/外壳:24-VFQFN 裸露焊盘,24-MLF? 标准包装:1
MICRF500 制造商:MICREL 制造商全称:Micrel Semiconductor 功能描述:700MHz to 1.1GHz RadioWire RF Transceiver
MICRF500BLQ 制造商:MICREL 制造商全称:Micrel Semiconductor 功能描述:700MHz to 1.1GHz RadioWire RF Transceiver
MICRF500BLQ TR 功能描述:射频接收器 700-1000MHz, 3.0V, FSK, FH Transceiver RoHS:否 制造商:Skyworks Solutions, Inc. 类型:GPS Receiver 封装 / 箱体:QFN-24 工作频率:4.092 MHz 工作电源电压:3.3 V 封装:Reel
MICRF500BLQTR 功能描述:TXRX UHF 700-1100MHZ 44-LQFP RoHS:否 类别:RF/IF 和 RFID >> RF 收发器 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:30 系列:- 频率:4.9GHz ~ 5.9GHz 数据传输率 - 最大:54Mbps 调制或协议:* 应用:* 功率 - 输出:-3dBm 灵敏度:- 电源电压:2.7 V ~ 3.6 V 电流 - 接收:* 电流 - 传输:* 数据接口:PCB,表面贴装 存储容量:- 天线连接器:PCB,表面贴装 工作温度:-25°C ~ 85°C 封装/外壳:68-TQFN 裸露焊盘 包装:管件
MICRF500EVAL1 功能描述:射频开发工具 MICRF500 Evaluation Kit - For experimental use only RoHS:否 制造商:Taiyo Yuden 产品:Wireless Modules 类型:Wireless Audio 工具用于评估:WYSAAVDX7 频率: 工作电源电压:3.4 V to 5.5 V
MICRF501 制造商:MICREL 制造商全称:Micrel Semiconductor 功能描述:300MHz to 600MHz RadioWire⑩ RF Transceiver
MICRF501BLQ 制造商:Rochester Electronics LLC 功能描述:- Bulk 制造商:RF Micro Devices Inc 功能描述: